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I. Introduction

DYNAMICAL systems inmany areas of science and engineering
aremodeled as a set of nonlinear ordinary differential equations

of the following form:

_x� f�x; �� (1)

where x is an n-dimensional vector of states, � are m independent
parameters, and f is an n-dimensional vector of nonlinear functions.
These systems show a host of interesting nonlinear dynamic
behavior, such as multiple attractors, limit cycles, jump phenomena,
hysteresis, frequency locking, and chaos [1]. Nonlinear behaviors
such as these are best understood in terms of bifurcations of the
dynamical system, which is a record of all critical points in the
(n�m)-dimensional state-parameter space in which equilibrium
and periodic solutions of Eq. (1) are either created, destroyed, or
undergo a change in their stability. Results from bifurcation theory
can then be used to describe the possible dynamic behavior of the
system as it encounters any of these bifurcation points. Bifurcation
methods have been widely used, for instance, to study nonlinear
phenomena in aircraft flight dynamics [2].

A bifurcation analysis must begin by computing all equilibrium
andperiodic solutionsof that systemalongwith information about the
stability of these solutions. The equilibrium solutions form (hyper)
surfaces in the state-parameter space, for example, a systemwith one
state variable and two parameters would have a two-dimensional
surface of equilibrium solutions in a (1� 2)-dimensional state-
parameter space.Unfortunately, for higher-dimensional systemswith
multiple parameters, both computing and visualizing the equilibrium
surfaces is exceedingly difficult [3]. Instead, the standard procedure
until recently [4] has been to compute what is called a bifurcation
diagram, that is, curves of equilibrium solutions as one of the param-
eters is varied while all the other parameters are held fixed. This
procedure may be repeated by sequentially selecting another param-
eter to be the variable, thus generating an entire family of bifurcation
diagrams.

Traditionally, therefore, bifurcation analysis of a multiparameter
dynamical system involves solving a series of one-parameter
problems of the following form:

_x� f�x; �1; �j � kj�; j� 2; . . . ; m (2)

or

_x� f�x; �1; �j � kj�1�; j� 2; . . . ; m (3)

where �1 is the principal continuation parameter, and the kj constrain
the values of the other parameters �j. To give a concrete example,
consider afive-state, three-parameter system in the formofEq. (1) for
the dynamics of an airplane performing a rapid rollingmaneuver. The
equations of motion for the airplane dynamics (see the Appendix)
and the associated data are the same as in [5]. The five states, x1–x5,
are, sequentially, the roll, pitch, and yaw rates, the angle of attack,
and the sideslip angle; the three parameters, �1–�3, are, sequentially,
the aileron deflection, rudder deflection, and elevator deflection. This
system is known from a previous study [6] to exhibit two transcritical
bifurcation branches, that is, a one-dimensional locus of transcritical
points in an eight-dimensional state-parameter space.With �2 and �3
constrained as �2 � k2�1 and �3 � k3, a bifurcation analysis is
carried out with aileron deflection �1 as the principal continuation
parameter. The bifurcation diagram for roll rate x1 (other states are
qualitatively similar) forfive different values of k2 is shown in Fig. 1.

§

Cases 1 and 2 show no bifurcation point, and cases 4 and 5 show
two turning points each, whereas the intermediate, case 3, shows a
single transcritical bifurcation. For this computation, the solutions
for cases 1 and 2 and 4 and 5were first obtained, and the presence of a
transcritical point was inferred from the change in the qualitative
dynamics of the system between cases 2 and 4. Then, starting with
one of the turning points (case 4 or 5), a two-parameter continuation
of the turning points was carried out to trace the locus of turning
points in the �1–�2 space (or, equivalently, in the �1–k2 space). A
turning point of this locus signifies the presence of a transcritical
bifurcation and gives the value of k2, corresponding to case 3 in
Fig. 1. Another computation using precisely this value of k2 was then
required to obtain the bifurcation diagram with the transcritical
bifurcation point. Care is required because a small perturbation in the
value of k2 is often enough to miss the transcritical point, giving a
solution of the type of either case 2 or 4. However, the solution is still
incomplete and further computationswith a variation of parameter�3
are required to locate the second branch of transcritical bifurcation
points known to exist for this dynamical system.

In contrast, the new approach proposed in this Note can, in
principle, provide the complete bifurcation diagram of a multi-
parameter system with a single computation, unlike the sequential
one-parameter approach in [4]; it is also computationally efficient,
unlike the surface tracking technique in [3].

II. New Approach

The key to our approach is to recognize that multiple (in principle,
all) bifurcations in the state-parameter space may be captured by a
single computation solving

_x� f�x; �1; �j � kj��1��; j� 2; . . . ; m (4)

For instance, in a (1� 2)-dimensional state-parameter space, the
constraints kj in Eqs. (2) and (3) are planes and, hence, may not, in
general, be expected to intersect multiple, or even one, bifurcation
point in space. In contrast, the constraints kj in Eq. (4) are arbitrary
surfaces and could be made to pass through as many bifurcation
points as desired.
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More rigorously, consider a (1� 2)-dimensional system in the
form of Eq. (1) for which the equilibrium points lie on a surface
given by f�x; �1; �2� � 0. Letting �2�s� � k2��1�s��, where s is
the arc length, the following condition can be obtained:

�
@f

@x

�
�
�
�� @f
@�1
�� � � @f@�2��k

0
2��1�� d�1ds

�dx
ds
� (5)

where � indicates that the quantity in parenthesis is evaluated at
the equilibrium point, and prime denotes the derivative of k2 with
respect to �1. For a one-dimensional system, the quantity on the
left-hand side of Eq. (5) is nothing but the eigenvalue at a given
equilibrium point. It follows that, at an equilibrium point with a
zero eigenvalue, either d�1=ds� 0, that is, it is a turning point, or
the bracketed term on the right-hand side is 0, that is, it is a
(transcritical or pitchfork) bifurcation point. In Eq. (2), k02��1��
0, and an additional condition, �@f=@�1�� � 0, is required for the
equilibrium point to be a bifurcation point. In Eq. (3), k02��1��
k2, and a bifurcation point is obtained for particular values of k2
for which the bracketed term on the right-hand side becomes 0.
Clearly, using Eqs. (2) and (3), bifurcation points are encountered
only under special circumstances. On the other hand, with
Eq. (4), k02��1� could be chosen to make the right-hand bracket
equal 0 at as many bifurcation points as desired, making it possi-
ble to capture multiple bifurcations with a single computation.

The issue, then, is how to prescribe the constraint functions kj. One
method for doing so is described here; however, it does not guarantee
that all bifurcation points will be captured. The question remains
open and is a matter for future research.

A. Prescribing the Constraint Functions kj

Construct an (m � 1)-dimensional constraint function on the state
variables x of the form y� g�x� � 0. The functions kj are then
computed as part of the solution by solving the following set of
(n�m � 1) nonlinear algebraic equations in the (n�m � 1)
unknowns x, kj, and the single parameter �1:

f�x; �1; kj��1�� � 0; j� 2; . . . ; m; and gk�x� � 0

k� 2; . . . ; m (6)

The constraints g�x� � 0 could be selected based on the physics of
the problem at hand. Consequently, the solved functions kj��1�
happen to be the required variation of the parameters �2 to �m to
constrain the equilibrium points of the system to the region of state
space defined by the functions gk�x� � 0, k� 2; . . . ; m.

A test for the well posedness of the functions gk�x� is available
from the machinery of the Lie derivative, commonly used in
nonlinear control theory [7].

B. Application to Example Problem

The procedure is now demonstrated on the aircraft roll dynamics
problem discussed earlier. The algorithm employed here is the same
as that used in our earlier work on extended bifurcation analysis [8].

The two constraint equations are taken to be of the following form:

y2 � g2�x� � x5 � 0; y3 � g3�x� � x2 � 0:18� 0 (7)

for the purpose of this illustration. The numerical values chosen here
are not special; they are taken from the steady-state values attained
after a representative time simulation. To test the well posedness,
each constraint function yk � gk�x� � 0 is differentiatedwith respect
to time:

_y k �
@gk
@xi

_xi �
@gk
@xi

fi�x; �1; kj��1�� � Lf�gk� � 0 (8)

where the repeated index implies summation, and Lf�gk� is the Lie
derivative. If necessary, higher Lie derivatives, such asL2

f�gk� and so
on, are taken until a particular kj appears in the expression for the Lie
derivative. For the present example, it can be verified that the
parameter functions k2 and k3, respectively, appear in the constraint
equations in Eq. (7) on taking the second derivative of y2 and first
derivative of y3. The seven-dimensional system obtained from the
equilibrium equations in the Appendix (by setting the left-hand side
to 0) and the constraint equations in Eq. (7) is thereforewell posed. Its
solution yields the parameter functions, k2��1� and k3��1�, viz.,
rudder and elevator deflections; these are plotted in Fig. 2.

Fig. 1 Bifurcation diagram from the traditional approach carried out

for five different values of k2, labeled 1–5 (full line: stable; dashed line:
unstable; open square: transcritical bifurcation).

Fig. 2 Bifurcation diagram (a) from the new approach using variation

of rudder and elevator deflection parameters (b) required to satisfy the

state variable constraints in (7) (full line: stable; dashed line: unstable;
open square: transcritical bifurcation). Cases 2 and 4 correspond

qualitatively to those in Fig. 1. Arrows in Fig. 2b relate each graph to the

labels on the vertical axis.
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C. Multiparameter Bifurcation Analysis

Bifurcation analysis of the three-parameter dynamical system in
the Appendix is now carried out in themanner of Eq. (4), with �2 and
�3 varying as per the functions k2��1� and k3��1� computed earlier,
and �1 being the principal continuation parameter. Note that all
parameters are varied simultaneously; hence, this is a true multi-
parameter analysis. A single computation gives the complete bifurca-
tion diagram; for example, roll rate x1 (other states are qualitatively
similar) showing both the transcritical bifurcation points is plotted in
Fig. 2. For comparison, Fig. 2 also shows solutions qualitatively
similar to those labeled 2 and 4 in Fig. 1; these are obtained by
slightly perturbing the parameter functions k2��1� and k3��1� from
their computed value. Figure 2 completely captures the qualitative
behavior of the dynamical system in question.

III. Conclusions

In this Note, we have presented a radically new approach to
computing bifurcation diagrams for dynamical systems with multi-
ple parameters. Using our approach, it is possible to capture multiple
bifurcation points with a single computation, and this is illustrated
with an example of a five-state, three-parameter dynamical system
from aircraft flight dynamics. There is scope for devising better and
more rigorous algorithms to arrive at the parameter constraint
function, which forms the underpinning of our approach.

Appendix: Equations of Motion:
Airplane Roll Dynamics

_x 1� l�x5� lpx1� lrx3�x2x3�Iz� Iy�=Ix� l�a�1� l�r�2 (A1)

_x 2 �m�x4 �m _� _x4 �mqx2 � x1x3�Iz � Ix�=Iy �m�e�3 (A2)

_x 3�n�x5�npx1�nrx3�x1x2�Iy� Ix�=Iz�n�a�1�n�r�2 (A3)

_x 4 � x2 � x1x5 � z�x4 (A4)

_x 5 � x1x4 � x3 � y�x5 (A5)
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